4.7 Article

Breakdown of the Hall-Petch relationship in extremely fine nanograined body-centered cubic Mo alloys

期刊

ACTA MATERIALIA
卷 213, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.116950

关键词

Nanocrystalline materials; Hall-Petch breakdown; Refractory bcc alloys; Grain boundary; Deformation behavior

资金

  1. Shenyang National Laboratory for Materials Science [E01SL102]
  2. US National Science Foundation [DMR-2002860]
  3. NASA [80MSFC19C0050]

向作者/读者索取更多资源

The study investigates the hardness and deformation behavior of body centered cubic Mo(O) alloys with grain sizes ranging from 120 to 4 nm, highlighting a peak hardness at 11 nm and a transition towards glass-like deformation behaviors as grain size decreases.
Mechanical properties and deformation behavior have been studied in face-centered cubic (fcc) metals with extremely fine grain sizes, even below about 20 nm, but this range is rarely studied in the body centered cubic (bcc) metals. Here, we study the hardness and deformation behavior of bcc Mo(O) alloys with grain sizes from 120 to 4 nm, covering the range of classical Hall-Petch behavior as well as the regime where that scaling law breaks down, between about 11 and 4 nm. A hardness as high as 17.3 GPa was achieved at the strongest grain size of 11 nm, and the breakdown at smaller grain sizes is associated with a number of changes in behavior: an inflection in activation volume (associated with a change in rate dependence of deformation) and increasing shear localization. At coarser grain sizes this is associated with shear offsets at grain boundaries, pointing to an increasing prevalence of intergranular deformation (by sliding or grain rotation). At finer grain sizes localization is associated with the formation of large shear bands at scales far greater than the grain size. These behaviors are suggestive of a crossover from crystal-like to glass-like deformation behaviors at the finest grain sizes, consistent with the increasing fraction of disordered regions in the structure. (c) 2021 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据