4.7 Article

Precipitation kinetics in metallic alloys: Experiments and modeling

期刊

ACTA MATERIALIA
卷 220, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.117338

关键词

Precipitation; Kinetics; Modelling; Experiments; Review

资金

  1. MIAI@Grenoble Alpes [ANR-19-P3IA-0003]
  2. Australian Research Council (ARC) [DP210102714]

向作者/读者索取更多资源

Nanoscale precipitation is a widely used microstructural tool for manipulating the properties of metallic alloys, particularly to increase strength. The process is controlled by an interplay between thermodynamics and kinetics, resulting in nucleation, growth, and coarsening in a variety of precipitation trajectories.
Nanoscale precipitation is one of the most widely used microstructural tools to manipulate the properties of metallic alloys, and especially to reach high strength. Optimal microstructures are reached through complex solid state phase transformations involving non-isothermal heat treatments, metastable phases, complex chemistry, non-equilibrium vacancies, and interaction with structural defects. These phase transformations are controlled by an interplay between thermodynamics and kinetics, resulting through nucleation, growth and coarsening, in a large variety of precipitation trajectories that depend on both alloy chemistry and processing. Progress in both experimental characterization and modeling has tremendously improved the knowledge and description of these processes. The purpose of this overview is to describe the current level of understanding of precipitation kinetics, starting from the relatively simple situation of homogeneous precipitation of dilute coherent phases and including different levels of additional complexity regarding the diffusion mechanism, the effect of finite volume fraction, the effect of particle shape, the competitive multi-phase precipitation, the heterogeneous nucleation, and the non-isothermal effects. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据