4.7 Article

The effect of local chemical ordering on dislocation activity in multi-principle element alloys: A three-dimensional discrete dislocation dynamics study

期刊

ACTA MATERIALIA
卷 220, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.117307

关键词

Discrete dislocation dynamics; Solute strengthening; Multi-principal element alloys; High entropy alloys; Local chemical ordering

资金

  1. U.S. National Science Foundation [CMMI-1454072, DMR-1807708]
  2. Office Of Naval Research [N00014-18-1-2858]

向作者/读者索取更多资源

This study introduces a formulation for considering the interaction between dislocations and substitutional solute atoms in fcc alloys in 3D DDD simulations. The model can explain phenomena such as slow dislocation motion, frequent cross-slip, and alignment with solute aggregation features observed in multi-principal element alloys.
The exceptional combination of strength and ductility in multi-component alloys is often attributed to the interaction of dislocations with the various solute atoms in the alloy. To study these effects on the mechanical properties of such alloys there is a need to develop a modeling framework capable of quantifying the effect of these solutes on the evolution of dislocation networks. Large scale three-dimensional (3D) Discrete dislocation dynamics (DDD) simulations can provide access to such studies but to date no relevant approaches are available that aim for a complete representation of real alloys with arbitrary chemical compositions. Here, we introduce a formulation of dislocation interaction with substitutional solute atoms in fcc alloys in 3D DDD simulations that accounts for solute strengthening induced by atomic misfit as well as fluctuations in the cross-slip activation energy. Using this model, we show that local fluctuations in the chemical composition of various CrFeCoNi-based multi-principal element alloys (MPEA) lead to sluggish dislocation motion, frequent cross-slip and alignment of dislocations with solute aggregation features, explaining experimental observations related to mechanical behavior and dislocation activity. It is also demonstrated, that this behavior observed for certain MPEAs cannot be reproduced by assuming a perfect solid solution. The developed method also provides a basis for further investigations of dislocation plasticity in any real arbitrary fcc alloy with substitutional solutes. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据