4.8 Article

Atomistic Insights on the Full Operation Cycle of a HfO2-Based Resistive Random Access Memory Cell from Molecular Dynamics

期刊

ACS NANO
卷 15, 期 8, 页码 12945-12954

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c01466

关键词

RRAM; valence change mechanism; MD; forming-reset-set; EChemDID

资金

  1. Spanish Ministerio de Ciencia, Innovacion y Universidades [RTI2018-097876-B-C21]

向作者/读者索取更多资源

Using molecular dynamics simulations, the atomic processes underlying forming, reset, and set in HfO2-based resistive random access memory (RRAM) cells are characterized. The formation and dissolution of conductive filaments during device operation are tracked with atomic detail. Reset can be achieved through a redox effect or a thermochemical process, while the set process involves lateral oxygen atoms.
We characterize the atomic processes that underlie forming, reset, and set in HfO2-based resistive random access memory (RRAM) cells through molecular dynamics (MD) simulations, using an extended charge equilibration method to describe external electric fields. By tracking the migration of oxygen ions and the change in coordination of Hf atoms in the dielectric, we characterize the formation and dissolution of conductive filaments (CFs) during the operation of the device with atomic detail. Simulations of the forming process show that the CFs form through an oxygen exchange mechanism, induced by a cascade of oxygen displacements from the oxide to the active electrode, as opposed to aggregation of pre-existing oxygen vacancies. However, the filament breakup is dominated by lateral, rather than vertical (along the filament), motion of vacancies. In addition, depending on the temperature of the system, the reset can be achieved through a redox effect (bipolar switch), where oxygen diffusion is governed by the applied bias, or by a thermochemical process (unipolar switch), where the diffusion is driven by temperature. Unlike forming and similar to reset, the set process involves lateral oxygen atoms as well. This is driven by field localization associated with conductive paths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据