4.6 Article

Neuroprotective Effects of Fluoxetine on Molecular Markers of Circadian Rhythm, Cognitive Deficits, Oxidative Damage, and Biomarkers of Alzheimer's Disease-Like Pathology Induced under Chronic Constant Light Regime in Wistar Rats

期刊

ACS CHEMICAL NEUROSCIENCE
卷 12, 期 12, 页码 2233-2246

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acschemneuro.1c00238

关键词

Circadian rhythm; suprachiasmatic nuclei; hippocampus; peroxiredoxin; Per2; Bace1; Mgat3

向作者/读者索取更多资源

This study suggests that chronic exposure to constant light disrupts circadian rhythms and brain function in rats, potentially contributing to the progression of Alzheimer's disease. However, treatment with fluoxetine can protect against these effects by preventing oxidative damage and gene dysregulation associated with AD.
There is mounting evidence of circadian rhythm disruption in Alzheimer's disease (AD); however, the cause-and-effect relationship between them is not understood. Chronic constant light exposure effectively disrupts circadian rhythm in rats. On the basis of previous publications, we hypothesized that chronic constant light exposure might contribute significantly to development of AD-like-phenotype in rats and that fluoxetine (Flx) treatment might protect the brain against it. Adult male rats were exposed to normal light-dark cycles, constant light (LL), constant dark, and LL+Flx (5 mg/kg/day, ZT5) for four months. The expression of molecular markers of circadian rhythm: Per2 transcripts; and protein expression of peroxiredoxin-1 (PRX1) and hyperoxidized peroxiredoxins (PRX-SO2/3) were significantly dysregulated in the suprachiasmatic nuclei (SCN) of LL rats, which was prevented with concomitant fluoxetine administration. The levels of glutamate and gamma-aminobutyric acid were dysregulated, and oxidative damage was observed in the SCN and hippocampi of LL rats. Fluoxetine treatment conferred protection against oxidative damage in LL rats. Constant light exposure also impaired rats' performance on Y-maze, Morris maze, and novel object recognition test, which was prevented with fluoxetine administration. A significant elevation in soluble A beta(1-42) levels, which strongly correlated with upregulation of Bace1 and Mgat3 transcripts was observed in the hippocampus of LL rats. Further, the expression of antiaging gene Sirt1 was downregulated, and neuronal damage indicator Prokr2 was upregulated in hippocampus. Fluoxetine rescued A beta(1-42) upregulation and AD-related genes' dysregulation. Our findings show that circadian disruption by exposure to chronic constant light may contribute to progression of AD, which can be prevented with fluoxetine treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据