4.8 Article

A Simple Way to Synthesize a Protective Skin around Any Hydrogel

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 31, 页码 37645-37654

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c09460

关键词

interfacial layer; organohydrogel; conductive hydrogel; nature-inspired material; biomimetic material

资金

  1. Army Research Office (ARO)

向作者/读者索取更多资源

A simple solution has been found to encase any hydrogel with a thin, transparent skin to prevent issues like swelling, drying, and leakage. This method offers tunable properties for the skin and could be useful in various applications involving gel-based materials.
In nature, various structures such as fruits and vegetables have a water-rich core that is covered by a hydrophobic layer, i.e., their skin. The skin creates a barrier that prevents chemicals in the external environment from entering the core; at the same time, the skin also ensures that the water in the core is preserved and not lost by evaporation. Currently, for many applications involving hydrogels, especially in areas such as soft robotics or bioelectronic interfaces, it would be advantageous if the gel could be encased in a skin-like material. However, forming such a skin around a gel has proved challenging because the skin would need to be a hydrophobic material with a distinct chemistry from the hydrophilic gel core. Here, we present a simple solution to this problem, which allows any hydrogel of arbitrary composition and geometry to be encased by a thin, transparent skin. Our synthesis technique involves an inside-out polymerization, where one component of the polymerization (the initiator) is present only in the gel core, while other components (the monomers) are present only in the external medium. Accordingly, a thin polymeric layer (similar to 10-100 mu m in thickness) grows outward from the core, and the entire process can be completed in a few minutes. We show that the presence of the skin prevents the gel from swelling in water and also from drying in air. Likewise, hydrophilic solutes in the gel core are completely prevented by the skin from leaking out into the external solution, while harsh chemicals (e.g., acids, bases, and chelators) or harmful microbes are prevented from entering the gels. The properties of the skin are all tunable, including its thickness and its mechanical properties. When the monomer used is urethane diacrylate, the resulting polyurethane skin is elastomeric, transparent, and peelable from the core gel. Conversely, when polyethylene glycol dimethacrylate is used as the monomer, the skin is hard and brittle (glass-like). The ability to grow a skin readily around any given hydrogel is likely to prove useful in numerous applications, such as in maintaining the electrical functionality of gel-based wires or circuit elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据