4.8 Article

Achieving Concurrent High Energy Density and Efficiency in All-Polymer Layered Paraelectric/Ferroelectric Composites via Introducing a Moderate Layer

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 23, 页码 27522-27532

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c08063

关键词

polymer-matrix composites; energy materials; electrical properties; hybrid; electrostatic capacitor

资金

  1. National Natural Science Foundation of China [51773187]
  2. Fundamental Research Funds for the Central Universities [201961060]

向作者/读者索取更多资源

Dielectric polymer capacitors are widely used in advanced electronics due to their high power density, but achieving high energy density and discharge efficiency remains a challenge. A novel all-polymer trilayer structure is proposed to address this issue by combining different polymers with specific properties to optimize the electric field distribution, resulting in significantly improved breakdown strength, energy density, efficiency, and cycling stability.
Dielectric polymer capacitors are extensively applied in advanced electronics by virtue of their extremely high power density. However, it remains a challenge to concurrently realize high energy density and high discharge efficiency. In order to solve this conundrum, we herein design a novel all-polymer trilayer structure, where the paraelectric poly(methyl methacrylate) (PMMA) is used as the top layer to obtain a high discharge efficiency, and ferroelectric P(VDF-HFP) is employed as the bottom layer to obtain a high energy density. Particularly, the PMMA/poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) blend composite is used as the middle layer to homogenize the electric field inside the trilayer composites, turning out an obviously boosted breakdown strength and elevated energy density. Consequently, an efficiency as high as 85% and an energy density up to 7.5 J/cm(3) along with excellent cycling stability are simultaneously realized at an ultrahigh electric field of 490 kV/mm. These attractive characteristics of the all-polymer trilayer structure suggest that the feasible pathway presented herein is significant to realize concurrently a high energy density and discharge efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据