4.8 Article

Tuning Interfacial Active Sites over Porous Mo2N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 35, 页码 41573-41583

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c10060

关键词

electrocatalyst; hydrogen evolution reaction; cobalt sulfide; molybdenum nitride; water splitting

资金

  1. National Natural Science Foundation of China [22072183]
  2. Changsha Municipal Natural Science Foundation [kq2014119]
  3. Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, China [2020kfkt02]

向作者/读者索取更多资源

A heterojunction of cobalt sulfide and Mo2N is designed for efficient hydrogen evolution reactions in both acid and alkaline electrolytes. The Mo-S bonds formed at the interface result in considerably enhanced hydrogen evolution reaction activity. This study provides a feasible strategy for designing hetero-based electrocatalysts with a tuned highly active interface.
Although various cobalt-sulfide-based materials have been reported for the hydrogen evolution reaction, only a few have achieved high activity in both acid and alkaline electrolytes due to the inherent poor conductivity and low active sites. In this work, a heterojunction of cobalt sulfide and Mo2N is designed for efficient hydrogen evolution reactions in both acid and alkaline electrolytes. X-ray photoelectron spectroscopy reveals that Mo-S bonds are formed at the interface between Mo2N and CoS2, which result in the fabricated Mo2N/CoS2 materials exhibiting a considerably enhanced hydrogen evolution reaction activity than the corresponding Mo2N, CoS2, and most reported Mo- and Co-based catalysts in electrolytes of H2SO4 and KOH solutions. Density functional theory calculations suggest that the redistribution of charges occurs at the heterointerface. In addition, the interfacial active sites possess a considerably lower hydrogen adsorption Gibbs free energy than those atoms that are far away from the interface, which is beneficial to the process of hydrogen evolution reaction. This study provides a feasible strategy for designing hetero-based electrocatalysts with a tuned highly active interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据