4.7 Article

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 40, 期 4, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3450626.3459943

关键词

Foveated Rendering; Head-mounted displays; Texture synthesis; Human Visual perception

资金

  1. EPSRC/UKRI project [EP/T01346X/1]

向作者/读者索取更多资源

The study introduces a real-time method to compute ventral metamers for peripheral vision, which offers better quality than existing foveation methods and reduces edge blurring effectively. By using smooth moments of steerable filter responses, a novel statistics type suited for real-time rendering is proposed, eliminating the need for costly optimization processes.
To peripheral vision, a pair of physically different images can look the same. Such pairs are metamers relative to each other, just as physically-different spectra of light are perceived as the same color. We propose a real-time method to compute such ventral metamers for foveated rendering where, in particular for near-eye displays, the largest part of the framebuffer maps to the periphery. This improves in quality over state-of-the-art foveation methods which blur the periphery. Work in Vision Science has established how peripheral stimuli are ventral metamers if their statistics are similar. Existing methods, however, require a costly optimization process to find such metamers. To this end, we propose a novel type of statistics particularly well-suited for practical real-time rendering: smooth moments of steerable filter responses. These can be extracted from images in time constant in the number of pixels and in parallel over all pixels using a GPU. Further, we show that they can be compressed effectively and transmitted at low bandwidth. Finally, computing realizations of those statistics can again be performed in constant time and in parallel. This enables a new level of quality for foveated applications such as such as remote rendering, level-of-detail and Monte-Carlo denoising. In a user study, we finally show how human task performance increases and foveation artifacts are less suspicious, when using our method compared to common blurring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据