4.7 Article

Computing Minimal Surfaces with Differential Forms

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 40, 期 4, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3450626.3459781

关键词

Beckmann problem; minimal surface

资金

  1. Computer Science and Engineering at UCSD

向作者/读者索取更多资源

The algorithm reformulates the problem as a convex optimization, overcoming challenges faced by previous numerical methods, and successfully finds the global minimum across all possible surface topologies. By adopting the Alternating Direction Method of Multiplier (ADMM), it efficiently achieves global minimal surfaces.
We describe a new algorithm that solves a classical geometric problem: Find a surface of minimal area bordered by an arbitrarily prescribed boundary curve. Existing numerical methods face challenges due to the non-convexity of the problem. Using a representation of curves and surfaces via differential forms on the ambient space, we reformulate this problem as a convex optimization. This change of variables overcomes many difficulties in previous numerical attempts and allows us to find the global minimum across all possible surface topologies. The new algorithm is based on differential forms on the ambient space and does not require handling meshes. We adopt the Alternating Direction Method of Multiplier (ADMM) to find global minimal surfaces. The resulting algorithm is simple and efficient: it boils down to an alternation between a Fast Fourier Transform (FFT) and a pointwise shrinkage operation. We also show other applications of our solver in geometry processing such as surface reconstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据