4.6 Article

Local master equations bypass the secular approximation

期刊

QUANTUM
卷 5, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2021-05-01-451

关键词

-

资金

  1. DTP grant from EPSRC [EP/R513210/1]
  2. EPSRC [EP/R045577/1]
  3. Royal Society
  4. EPSRC [EP/R045577/1, EP/R513210/1] Funding Source: UKRI

向作者/读者索取更多资源

Master equations are critical for modeling heat flow in nanoscale thermodynamic systems. Local master equations and global master equations are often used to model interacting subsystems, with the former being viewed as more reliable for weakly interacting open quantum systems. The secular approximation underlying global master equations may destroy key dynamical features, leading to different predictions in transient heat flows compared to local master equations.
Master equations are a vital tool to model heat flow through nanoscale thermodynamic systems. Most practical devices are made up of interacting subsystems and are often modelled using either local master equations (LMEs) or global master equations (GMEs). While the limiting cases in which either the LME or the GME breaks down are well understood, there exists a 'grey area' in which both equations capture steady-state heat currents reliably but predict very different transient heat flows. In such cases, which one should we trust? Here we show that, when it comes to dynamics, the local approach can be more reliable than the global one for weakly interacting open quantum systems. This is due to the fact that the secular approximation, which underpins the GME, can destroy key dynamical features. To illustrate this, we consider a minimal transport setup and show that its LME displays exceptional points (EPs). These singularities have been observed in a superconducting-circuit realisation of the model [1]. However, in stark contrast to experimental evidence, no EPs appear within the global approach. We then show that the EPs are a feature built into the Redfield equation, which is more accurate than the LME and the GME. Finally, we show that the local approach emerges as the weak-interaction limit of the Redfield equation, and that it entirely avoids the secular approximation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据