4.3 Article

Mild Phenotype of Wolfram Syndrome Associated With a Common Pathogenic Variant Is Predicted by a Structural Model of Wolframin

期刊

NEUROLOGY-GENETICS
卷 7, 期 2, 页码 -

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/NXG.0000000000000578

关键词

-

向作者/读者索取更多资源

This study describes a common WFS1 gene variant in Ashkenazi Jews that leads to a milder disease phenotype. It was found that the disease onset caused by this variant is later in age but with relatively mild symptoms, correlated with the impact on protein thermodynamics.
Objective To describe the WFS1 c.1672C>T; p.R558C missense variant, found in 1.34% of Ashkenazi Jews, that has a relatively mild phenotype and to use computational normal mode analysis (NMA) to explain the genotype-phenotype relationship. Methods The clinical, laboratory, and genetic features of 8 homozygotes were collected. A model of the wolframin protein was constructed, and NMA was used to simulate the effect of the variant on protein thermodynamics. Results Mean age at Wolfram syndrome (WS) diagnosis among homozygotes was 30 years; diabetes (7/8) was diagnosed at mean age 19 years (15-21 years), and bilateral optic atrophy (with MRI evidence of optic/chiasm atrophy) (6/8) at mean age 29 years (15-48 years). The oldest patient (62 years) also had gait difficulties, memory problems, parietal and cerebellar atrophy, and white matter hyperintense lesions. All retained functional vision with independent ambulation and self-care; none had diabetes insipidus or hearing loss. The p.R558C variant caused less impairment of protein entropy than WFS1 variants associated with a more severe phenotype. Conclusions The p.R558C variant causes a milder, late-onset phenotype of WS. We report a structural model of wolframin protein based on empirical functional studies and use NMA modeling to show a genotype-phenotype correlation across all homozygotes. Clinicians should be alert to this condition in patients with juvenile diabetes and patients of any age with a combination of diabetes and optic atrophy. Computational NMA has potential benefit for prediction of the genotype-phenotype relationship.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据