4.6 Article

Cyclin-dependent kinase inhibitors exert distinct effects on patient-derived 2D and 3D glioblastoma cell culture models

期刊

CELL DEATH DISCOVERY
卷 7, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41420-021-00423-1

关键词

-

资金

  1. Lieselotte Beutel Stiftung

向作者/读者索取更多资源

Therapeutic activity of selective CDK inhibitors in GBM has been confirmed through comprehensive analysis, showing effects on tumor model viability, morphology, senescence induction, mitochondrial dysfunction, and DNA damage. The combination of dinaciclib and abemaciclib may exhibit synergistic effects, while the simultaneous combination with TMZ shows antagonistic effects on therapeutic outcome.
Current therapeutic approaches have met limited clinical success for glioblastoma multiforme (GBM). Since GBM harbors genomic alterations in cyclin-dependent kinases (CDKs), targeting these structures with specific inhibitors (CDKis) is promising. Here, we describe the antitumoral potential of selective CDKi on low-passage GBM 2D- and 3D models, cultured as neurospheres (NSCs) or glioma stem-like cells (GSCs). By applying selective CDK4/6i abemaciclib and palbociclib, and the more global CDK1/2/5/9-i dinaciclib, different effects were seen. Abemaciclib and dinaciclib significantly affected viability in 2D- and 3D models with clearly visible changes in morphology. Palbociclib had weaker and cell line-specific effects. Motility and invasion were highly affected. Abemaciclib and dinaciclib additionally induced senescence. Also, mitochondrial dysfunction and generation of mitochondrial reactive oxygen species (ROS) were seen. While autophagy was predominantly visible after abemaciclib treatment, dinaciclib evoked gamma -H2AX-positive double-strand breaks that were boosted by radiation. Notably, dual administration of dinaciclib and abemaciclib yielded synergistic effects in most cases, but the simultaneous combination with standard chemotherapeutic agent temozolomide (TMZ) was antagonistic. RNA-based microarray analysis showed that gene expression was significantly altered by dinaciclib: genes involved in cell-cycle regulation (different CDKs and their cyclins, SMC3), mitosis (PLK1, TTK), transcription regulation (IRX3, MEN1), cell migration/division (BCAR1), and E3 ubiquitination ligases (RBBP6, FBXO32) were downregulated, whereas upregulation was seen in genes mediating chemotaxis (CXCL8, IL6, CCL2), and DNA-damage or stress (EGR1, ARC, GADD45A/B). In a long-term experiment, resistance development was seen in 1/5 cases treated with dinaciclib, but this could be prevented by abemaciclib. Vice versa, adding TMZ abrogated therapeutic effects of dinaciclib and growth was comparable to controls. With this comprehensive analysis, we confirm the therapeutic activity of selective CDKi in GBM. In addition to the careful selection of individual drugs, the timing of each combination partner needs to be considered to prevent resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据