4.7 Article

The metabolic network of the last bacterial common ancestor

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-021-01918-4

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [MA1426/21-1]
  2. European Research Council [666053]
  3. Volkswagen Foundation [93046]

向作者/读者索取更多资源

Researchers reconstructed the habitat and lifestyle of the last bacterial common ancestor (LBCA) by analyzing 146 LCBA protein families, indicating that the LBCA was rod-shaped and the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway.
Bacteria are the most abundant cells on Earth. They are generally regarded as ancient, but due to striking diversity in their metabolic capacities and widespread lateral gene transfer, the physiology of the first bacteria is unknown. From 1089 reference genomes of bacterial anaerobes, we identified 146 protein families that trace to the last bacterial common ancestor, LBCA, and form the conserved predicted core of its metabolic network, which requires only nine genes to encompass all universal metabolites. Our results indicate that LBCA performed gluconeogenesis towards cell wall synthesis, and had numerous RNA modifications and multifunctional enzymes that permitted life with low gene content. In accordance with recent findings for LUCA and LACA, analyses of thousands of individual gene trees indicate that LBCA was rod-shaped and the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway. Joana C. Xavier, Rebecca E. Gerhards and colleagues reconstruct the habitat and lifestyle of the last bacterial common ancestor (LBCA) through the construction of the metabolic network and gene tree analysis of 146 LCBA protein families. Their analyses indicate that the LBCA was rod-shaped, and that the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据