4.4 Article

Changes of Metabolic Connectivity in Dementia with Lewy Bodies with Visual Hallucinations: A 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Study

期刊

BRAIN CONNECTIVITY
卷 11, 期 7, 页码 518-528

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/brain.2020.0988

关键词

dementia with Lewy bodies; graph analysis; hallucinations; metabolic connectivity

资金

  1. Department of excellence 2018-2022'' initiative of the Italian Ministry of Education (MIUR)

向作者/读者索取更多资源

Complex visual hallucinations in dementia with Lewy bodies are associated with changes in neuronal activity and metabolic connectivity within cortical regions. Patients with visual hallucinations show weaker metabolic connectivity in certain brain networks but stronger connectivity in specific regions.
Background: Recurrent complex visual hallucinations (VHs) are common in dementia with Lewy bodies (DLB). Previous investigations suggest that VHs are associated with connectivity changes within and between large scale networks involved in visual processing and attention. Aim: To examine more directly whether VH in DLB reflects direct changes in neuronal activity between cortical regions assessing metabolic connectivity with F-18-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/magnetic resonance and graph theory. Methods: Twenty-six patients with probable DLB (13 VHs and 13 no-VHs; mean age: 72.9 +/- 6.87 years vs. 70.2 +/- 7.96 years) were enrolled. T1-weighted 3T-MR images and FDG-PET data were coacquired using an integrated PET/MR scanner. MR images defined cortical parcels of the Shaefer-Yeo atlas for multiple functional networks. We computed in each parcel the regional standardized-uptake-values (SUV) corrected for partial volume and normalized to the cerebellar cortex. Strength degree, clustering coefficient, characteristic path length, and hubs were analyzed with graph analysis. Results: The mean F-18-FDG-PET SUVr of parcels belonging to the visual and dorsal attention networks (DANs) were significantly lower in the VH group (p = 0.01). Metabolism in the right temporoparietal cortex correlated with VH severity (R = -0.58; p < 0.01). VH patients showed weaker metabolic connectivity in the parietal, temporal, and occipital cortex of the default mode network, DAN, and visual networks, but more robust connectivity in the right insula and orbitofrontal cortex. A lower global efficiency characterized the VH group, except for ventral attention network and limbic network. Conclusions: VHs in DLB correlate with lower glucose metabolism and weaker metabolic connectivity in the parietal-occipital cortex, but stronger connectivity in the limbic system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据