4.7 Article

Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models

期刊

出版社

ELSEVIER INC
DOI: 10.1016/j.jcmgh.2021.04.014

关键词

Inulin; Cellulose; Gut Microbiota; Insulin Resistance; Type 1 Diabetes

资金

  1. National Institute of Diabetes and Digestive and Kidney Diseases [DK099071, DK083890]
  2. American Diabetes Association [1-19-JDF-077]

向作者/读者索取更多资源

Fermentable fiber, particularly inulin, has been shown to prevent and treat type 1 diabetes by increasing short-chain fatty acids and interleukin 22, which is microbiota-dependent. This effect is associated with alterations in gut microbiota composition.
BACKGROUND & AIMS: Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear. METHODS: To examine impact of dietary fibers on development of type 1 diabetes in the streptozotocin (STZ)-induced and spontaneous non-obese diabetes (NOD) models, mice were fed grain-based chow (GBC) or compositionally defined diets enriched with a fermentable fiber (inulin) or an insoluble fiber (cellulose). Spontaneous (NOD mice) or STZ-induced (wild-type mice) diabetes was monitored. RESULTS: Relative to GBC, low-fiber diets exacerbated STZ-induced diabetes, whereas diets enriched with inulin, but not cellulose, strongly protected against or treated it. Inulin's restoration of glycemic control prevented loss of adipose depots, while reducing food and water consumption. Inulin normalized pancreatic function and markedly enhanced insulin sensitivity. Such amelioration of diabetes was associated with alterations in gut microbiota composition and was eliminated by antibiotic administration. Pharmacologic blockade of fermentation reduced inulin's beneficial impact on glycemic control, indicating a role for short-chain fatty acids (SCFA). Furthermore, inulin's microbiota-dependent anti-diabetic effect associated with SCFA-independent restoration of interleukin 22, which was necessary and sufficient to ameliorate STZ-induced diabetes. Inulin-enriched diets significantly delayed diabetes in NOD mice. CONCLUSIONS: Fermentable fiber confers microbiota-dependent increases in SCFA and interleukin 22 that, together, may have potential to prevent and/or treat type 1 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据