4.7 Article

Biosorption of methylene blue from water by live Lemna minor

期刊

出版社

ELSEVIER
DOI: 10.1016/j.eti.2021.101432

关键词

Duckweed; Phytoremediation; Textile dye; Biosorption; Box-Behnken design

向作者/读者索取更多资源

Numerous green treatment technologies have been applied to textile wastewater treatment, with phytoremediation being an effective and cost-efficient alternative. In this study, Lemna minor was investigated for its phytoremediation of Methylene Blue, with optimal conditions resulting in a dye removal efficiency of 98% mainly through biosorption mechanism. The study adds to the literature by showcasing wider applicability, maximization of efficiency through experimental design, and evidence supporting biosorption as a plausible mechanism.
A number of green treatment technologies have been used for textile wastewater treatment, among which phytoremediation is a low cost, effective, and promising alternative - to conventional treatment techniques. The aim of this study was to investigate performance of Lemna minor (L. minor) for phytoremediation of Methylene Blue (MB). A Box-Behnken experimental design (BBD) was applied to study individual and combined effect of operating parameters on MB dye removal efficiency: MB dye concentration (x(1): 5 - 25 mgL(-1)), amount of L. minor (x(2): 1 - 5 g), and pH of the solution (x(3): 4.5 - 9.0). Response surface analysis and response model were utilized to reveal the relationship between operating parameters and MB removal efficiency. Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analyses of L. minor samples were used to infer on the removal mechanism. The predicted optimum values were x(1) = 15 mgL(-1), x(2) = 4.9 g, and x(3) = 6.8, for the highest removal efficiency (98%) within 24 h. FTIR and SEM analyses indicated that the dye removal mechanism was mainly biosorption. Desorption experiments revealed that L. minor released only a small fraction of the sorbed dye. Consequently, in addition to being environmental friendly and cost effective, results of this study show that L. minor can be effectively used for MB dye removal from wastewaters while adding to the pertinent but limited literature by presenting its applicability in wider operating parameter ranges, maximization of removal efficiency through experimental design, and evidence that biosorption is a plausible mechanism. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据