4.6 Article

High Throughput Virtual Screening and Molecular Dynamics Simulation for Identifying a Putative Inhibitor of Bacterial CTX-M-15

期刊

ANTIBIOTICS-BASEL
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/antibiotics10050474

关键词

antibiotic resistance; CTX-M-15; docking; extended spectrum beta-lactamase; molecular dynamics simulation; screening

资金

  1. Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia [354]

向作者/读者索取更多资源

This study aimed to identify a promising anti-CTX-M-15 ligand as a 'seed-molecule' for future drug design against resistant bacteria. Through virtual screening and molecular dynamics simulation, a molecule that efficiently bound to bacterial CTX-M-15 enzyme was found, with detailed trajectory analysis conducted.
Background: Multidrug resistant bacteria are a major therapeutic challenge. CTX-M-type enzymes are an important group of class A extended-spectrum beta-lactamases (ESBLs). ESBLs are the enzymes that arm bacterial pathogens with drug resistance to an array of antibiotics, notably the advanced-generation cephalosporins. The current need for an effective CTX-M-inhibitor is high. Objective: The aim of the current study was to identify a promising anti-CTX-M-15 ligand whose chemical skeleton could be used as a 'seed-molecule' for future drug design against resistant bacteria. Methods: Virtual screening of 5,000,000 test molecules was performed by 'MCULE Drug Discovery Platform'. 'ADME analyses' was performed by 'SWISS ADME'. TOXICITY CHECKER of MCULE was employed to predict the safety profile of the test molecules. The complex of the 'Top inhibitor' with the 'bacterial CTX-M-15 enzyme' was subjected to 102.25 ns molecular dynamics simulation. This simulation was run for 3 days on a HP ZR30w workstation. Trajectory analyses were performed by employing the macro 'md_analyze.mcr' of YASARA STRUCTURE version 20.12.24.W.64 using AMBER14 force field. YANACONDA macro language was used for complex tasks. Figures, including RMSD and RMSF plots, were generated. Snapshots were acquired after every 250 ps. Finally, two short videos of '41 s' and '1 min and 22 s' duration were recorded. Results: 5-Amino-1-(2H-[1,2,4]triazino[5,6-b]indol-3-yl)-1H-pyrazole-4-carbonitrile, denoted by the MCULE-1352214421-0-56, displayed the most efficient binding with bacterial CTX-M-15 enzyme. This screened molecule significantly interacted with CTX-M-15 via 13 amino acid residues. Notably, nine amino acid residues were found common to avibactam binding (the reference ligand). Trajectory analysis yielded 410 snapshots. The RMSD plot revealed that around 26 ns, equilibrium was achieved and, thereafter, the complex remained reasonably stable. After a duration of 26 ns and onwards until 102.25 ns, the backbone RMSD fluctuations were found to be confined within a range of 0.8-1.4 angstrom. Conclusion: 5-Amino-1-(2H-[1,2,4]triazino[5,6-b]indol-3-yl)-1H-pyrazole-4-carbonitrile could emerge as a promising seed molecule for CTX-M-15-inhibitor design. It satisfied ADMET features and displayed encouraging 'simulation results'. Advanced plots obtained by trajectory analyses predicted the stability of the proposed protein-ligand complex. 'Hands on' wet laboratory validation is warranted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据