4.7 Article

A Convolutional Neural Network for Automated Detection of Humpback Whale Song in a Diverse, Long-Term Passive Acoustic Dataset

期刊

FRONTIERS IN MARINE SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2021.607321

关键词

deep machine learning; convolutional neural network; humpback whale (Megaptera novaeangliae); seasonal occurrence; Hawaii; Mariana Islands; Kingman Reef; passive acoustic monitoring

资金

  1. Protected Species and Ecosystems and Oceanography Divisions at NMFS
  2. PIFSC
  3. Ocean Acoustics program at NMFS Office of Science and Technology
  4. US Navy CNO-N45
  5. National Geographic Society

向作者/读者索取更多资源

Passive acoustic monitoring is a valuable tool for studying marine mammals, and a deep learning CNN model successfully identified humpback whale songs, revealing new spatial and temporal patterns.
Passive acoustic monitoring is a well-established tool for researching the occurrence, movements, and ecology of a wide variety of marine mammal species. Advances in hardware and data collection have exponentially increased the volumes of passive acoustic data collected, such that discoveries are now limited by the time required to analyze rather than collect the data. In order to address this limitation, we trained a deep convolutional neural network (CNN) to identify humpback whale song in over 187,000 h of acoustic data collected at 13 different monitoring sites in the North Pacific over a 14-year period. The model successfully detected 75 s audio segments containing humpback song with an average precision of 0.97 and average area under the receiver operating characteristic curve (AUC-ROC) of 0.992. The model output was used to analyze spatial and temporal patterns of humpback song, corroborating known seasonal patterns in the Hawaiian and Mariana Islands, including occurrence at remote monitoring sites beyond well-studied aggregations, as well as novel discovery of humpback whale song at Kingman Reef, at 5(circle) North latitude. This study demonstrates the ability of a CNN trained on a small dataset to generalize well to a highly variable signal type across a diverse range of recording and noise conditions. We demonstrate the utility of active learning approaches for creating high-quality models in specialized domains where annotations are rare. These results validate the feasibility of applying deep learning models to identify highly variable signals across broad spatial and temporal scales, enabling new discoveries through combining large datasets with cutting edge tools.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据