4.7 Article

Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus

期刊

FRONTIERS IN MARINE SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2021.668097

关键词

Prochlorococcus; ecotoxicology; nanomaterials; cerium oxide; marine pollution; phytoplankton

资金

  1. NERC CENTA DTP studentship [NE/L002493/1]
  2. NERC Independent Research Fellowship [NE/K009044/1]
  3. Ramon y Cajal contract (Ministry of Science, Innovation and Universities) [RYC-2017-22452]
  4. Ramon y Cajal contract (National Agency of Research) [RYC-2017-22452]
  5. Ramon y Cajal contract (European Social Fund) [RYC-2017-22452]
  6. BBSRC/EPSRC Synthetic Biology Research Centre WISB [BB/M017982/1]
  7. [PID2019109509RB-I00/AEI/10.13039/501100011033]

向作者/读者索取更多资源

The study found that cerium oxide nanoparticles have a short-term impact on cell density of cyanobacteria Prochlorococcus sp. MED4, but cell numbers recover after prolonged exposure. Exposure at high cell density results in greater effects, while supra-environmental concentrations of nCeO2 significantly reduce cell density.
Cerium oxide nanoparticles (nCeO2) are used at an ever-increasing rate, however, their impact within the aquatic environment remains uncertain. Here, we expose the ecologically significant marine cyanobacterium Prochlorococcus sp. MED4 to nCeO2 at a wide range of concentrations (1 mu g L-1 to 100 mg L-1) under simulated natural and nutrient rich growth conditions. Flow cytometric analysis of cyanobacterial populations displays the potential of nCeO2 (100 mu g L-1) to significantly reduce Prochlorococcus cell density in the short-term (72 h) by up to 68.8% under environmentally relevant conditions. However, following longer exposure (240 h) cyanobacterial populations are observed to recover under simulated natural conditions. In contrast, cell-dense cultures grown under optimal conditions appear more sensitive to exposure during extended incubation, likely as a result of increased rate of encounter between cyanobacteria and nanoparticles at high cell densities. Exposure to supra-environmental nCeO2 concentrations (i.e., 100 mg L-1) resulted in significant declines in cell density up to 95.7 and 82.7% in natural oligotrophic seawater and nutrient enriched media, respectively. Observed cell decline is associated with extensive aggregation behaviour of nCeO2 upon entry into natural seawater, as observed by dynamic light scattering (DLS), and hetero-aggregation with cyanobacteria, confirmed by fluorescent microscopy. Hence, the reduction of planktonic cells is believed to result from physical removal due to co-aggregation and co-sedimentation with nCeO2 rather than by a toxicological and cell death effect. The observed recovery of the cyanobacterial population under simulated natural conditions, and likely reduction in nCeO2 bioavailability as nanoparticles aggregate and undergo sedimentation in saline media, means that the likely environmental risk of nCeO2 in the marine environment appears low. Superscript/Subscript Available

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据