4.4 Article

A Solution to the Time-Dependent Stress Distribution in Suborbicular Backfilled Stope Interaction with Creeping Rock

期刊

ADVANCES IN CIVIL ENGINEERING
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/5533980

关键词

-

资金

  1. National Natural Science Foundation of China [51904055]
  2. Fundamental Research Funds for the Central Universities of China [N2001010]

向作者/读者索取更多资源

The study considered the time-dependent effect of internal stresses in backfilled stopes and thoroughly discussed the influential parameters. The results showed that with increasing stope buried depth and rheological effect of nearby rock materials, the stress distribution in the backfill material will exceed its self-weight stress and present significant time-dependent characteristics. Delayed backfilling weakens the backfill's ground support effect on nearby rock materials, hence timely and multipoint simultaneous backfilling is needed.
The creep behavior of deep weak rock masses is important due to an underground opening. Appreciating the nature and source of these deformations requires the knowledge of rock mass and ground support interaction. The theoretical solution of the backfill's internal stresses needs to consider the time-dependent effect. In the present study, the coupling interaction between the creep behavior of the nearby rock material and the internal stresses in the backfilled stope is considered and the interaction characteristics are given analytically. A solution is then proposed regarding the time-dependent stress distribution in suborbicular backfilled stope interaction with creeping rock. Besides, the correctness of the theoretical solution is verified by numerical simulation, while influential parameters such as stope buried depth, lateral pressure coefficient, horizontal stress ratio, creep time of surrounding rock mass, delay time of the backfill, and Young's modulus are thoroughly discussed. Research shows that when the stope buried depth becomes large as well as the rheological effect of the nearby rock materials becomes significant, the stress distribution in the backfill material exceeds its self-weight stress and presents significant time-dependent characteristics. The delayed backfilling weakens the backfill's ground support effect on the nearby rock material. Hence, timely and multipoint simultaneous backfilling is needed for a stope with significant rheological deformation of surrounding rock mass. Lastly, this work will offer useful knowledge while designing the backfill materials for underground mines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据