4.7 Review

Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective

期刊

ANIMALS
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/ani11051257

关键词

clinical cytogenetics; genomics; chromosome abnormality; reciprocal translocation; domestic pig

向作者/读者索取更多资源

Chromosome rearrangements are a major cause of impaired fertility in domestic pigs. Classical cytogenetics techniques have been supplemented by molecular cytogenetics and cytogenomics to improve the diagnosis of rearrangements, enabling more precise and rapid identification of chromosome abnormalities in swine herds. These advancements have become integral tools in the livestock industry, aiding breeders in making informed breeding decisions.
Simple Summary Chromosome rearrangements are one of the main etiological factors leading to impaired fertility in the domestic pig. The high prevalence of chromosome rearrangements in swine herds, coupled with the production of significantly lower litter sizes, has led to the implementation of cytogenetics techniques in screening prospective breeding boars for rearrangements. Beginning in the 1960s, classical cytogenetics techniques have been applied in laboratories, resulting in the identification of over 200 distinct chromosome rearrangements in the pig. More recently advances in technology, and the development of molecular cytogenetics and cytogenomics techniques, have enhanced the resolution of rearrangements and advanced diagnostic techniques, allowing for more precise and rapid diagnosis of rearrangements. The chromosomes of the domestic pig (Sus scrofa domesticus) are known to be prone to reciprocal chromosome translocations and other balanced chromosome rearrangements with concomitant fertility impairment of carriers. In response to the remarkable prevalence of chromosome rearrangements in swine herds, clinical cytogenetics laboratories have been established in several countries in order to screen young boars for chromosome rearrangements prior to service. At present, clinical cytogenetics laboratories typically apply classical cytogenetics techniques such as giemsa-trypsin (GTG)-banding to produce high-quality karyotypes and reveal large-scale chromosome ectopic exchanges. Further refinements to clinical cytogenetics practices have led to the implementation of molecular cytogenetics techniques such as fluorescent in-situ hybridization (FISH), allowing for rearrangements to be visualized and breakpoints refined using fluorescently labelled painting probes. The next-generation of clinical cytogenetics include the implementation of DNA microarrays, and next-generation sequencing (NGS) technologies such as DNA sequencing to better explore tentative genome architecture changes. The implementation of these cytogenomics techniques allow the genomes of rearrangement carriers to be deciphered at the highest resolution, allowing rearrangements to be detected; breakpoints to be delineated; and, most importantly, potential gene implications of those chromosome rearrangements to be interrogated. Clinical cytogenetics has become an integral tool in the livestock industry, identifying rearrangements and allowing breeders to make informed breeding decisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据