4.7 Article

Epigenetic Changes in Equine Embryos after Short-Term Storage at Different Temperatures

期刊

ANIMALS
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/ani11051325

关键词

equine; embryo; transport; methylation; development; embryo-maternal recognition

资金

  1. University of Veterinary Medicine Vienna, Austria

向作者/读者索取更多资源

In embryos created through assisted reproductive techniques, changes in gene expression and DNA methylation due to storage temperature differences may impact embryonic development and viability after transfer. This study demonstrates alterations in gene expression and methylation levels of stored horse embryos compared to fresh embryos, highlighting potential risks of compromising embryo development following short-term storage, regardless of temperature.
Simple Summary In embryos subjected to assisted reproductive techniques, epigenetic modifications may occur that can influence embryonic development and establishment of pregnancy. In horses, the storage temperature during transport of fresh embryos before transfer is a major concern. The aim of this study was, therefore, to determine the effects of two storage temperatures (5 degrees C and 20 degrees C) on equine embryos, collected at day seven after ovulation and stored for 24 h, concerning morphological development, expression of candidate genes associated with embryo growth and development, maternal recognition of pregnancy, methylation, apoptosis and gene-specific and global DNA methylation. Temperature during storage did not affect embryo size. There were no changes in pH and lipid peroxidation of the medium irrespective of group. mRNA expression and gene-specific DNA methylation of genes related to growth and development, maternal recognition of pregnancy, DNA methylation and apoptosis in stored embryos (5 degrees C and 20 degrees C) were altered when compared to fresh embryos. Therefore, our study demonstrates for the first time the gene-specific and global DNA methylation status of fresh equine embryos collected on days seven and eight after ovulation. Short-term storage, regardless of temperature, may compromise embryo development after transfer. In embryos subjected to assisted reproductive techniques, epigenetic modifications may occur that can influence embryonic development and the establishment of pregnancy. In horses, the storage temperature during transport of fresh embryos before transfer is a major concern. The aim of this study was, therefore, to determine the effects of two storage temperatures (5 degrees C and 20 degrees C) on equine embryos, collected at day seven after ovulation and stored for 24 h, on: (i) morphological development; (ii) expression of candidate genes associated with embryo growth and development, maternal recognition of pregnancy, methylation and apoptosis, and (iii) gene-specific and global DNA methylation. Embryos (n = 80) were collected on day seven or day eight after ovulation and assigned to four groups: day seven control (E7F, fresh); day seven, stored for 24 h at 5 degrees C (E5C); day seven, stored for 24 h at 20 degrees C (E20C) and day eight control (E8F, fresh 24h time control). The embryos and the storage medium (EquiHold, holding medium, Minitube, Tiefenbach, Germany) from all treatment groups were analyzed for (i) medium temperature, pH, and lipid peroxidation (malondialdehyde; MDA) and (ii) embryo morphology, mRNA expression and DNA methylation (immunohistochemistry and gene-specific DNA methylation). The size of embryos stored at 5 degrees C was larger (p < 0.01), whereas embryos stored at 20 degrees C were smaller (p < 0.05) after 24 h. There were no changes in pH and MDA accumulation irrespective of the group. The mRNA expression of specific genes related to growth and development (POU5F1, SOX2, NANOG), maternal recognition of pregnancy (CYP19A1, PTGES2), DNA methylation (DNMT1, DNMT3A, DNMT3B) and apoptosis (BAX) in the E5C and E20C were either up or downregulated (p < 0.05) when compared to controls (E7F and E8F). The immune expression of 5mC and 5hmC was similar among treatment groups. Percentage of methylation in the CpG islands was lower in the specific genes ESR1, NANOG and DNMT1 (p < 0.001) in E20C embryos when compared to E8F (advanced embryo stage). Therefore, our study demonstrates for the first time the gene-specific and global DNA methylation status of fresh equine embryos collected on days seven and eight after ovulation. Although our results suggest some beneficial effects of storage at 20 degrees C in comparison to 5 degrees C, the short-term storage, regardless of temperature, modified gene expression and methylation of genes involved in embryo development and may compromise embryo viability and development after transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据