4.6 Article

E-Shaped H-Slotted Dual Band mmWave Antenna for 5G Technology

期刊

ELECTRONICS
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/electronics10091019

关键词

5G; MIMO; self-isolated; 28 GHz; gain; slot antenna

向作者/读者索取更多资源

This study introduces a dual-band millimeter wave MIMO antenna system for 5G technology, achieving good isolation and high gain at frequencies of 28 GHz and 38 GHz through specific structures and materials.
The aim of this work is to propose a dual band millimeter wave (mmwave) MIMO antenna system for 5G technology. In addition, the arrangement of the antenna elements in an array should be in such a manner that without using the traditional decoupling structures and/or techniques, a reasonable isolation level must be achieved. To demonstrate this, a system consists of four radiating elements that are etched on a 0.508 mm-thick Rogers-5880 substrate. The dielectric constant of the substrate is 2.2 and the loss tangent is 0.0009. Each radiating element consists of three parts; an E-shaped patch, an H-shaped slot within a patch, and a transmission line. The system is resonating at two different mmwave frequencies, i.e., 28 GHz and 38 GHz with a minimum port isolation of 28 dB. The mean measured gain is found to be at 7.1 dBi at 28 GHz and 7.9 dBi at 38 GHz with average efficiency, and envelope correlation coefficient (ECC) of the system at 70%, and 0.0005 respectively. The proposed system is designed and simulated in a full-wave electromagnetic wave software Computer Simulation Technology (CST), fabricated using LPKF D104 milling machine, and measured using R&SZNA67 vector network analyzer. An excellent agreement is observed between the simulated and the measured results and a detailed comparison with the previous works is also presented. Due to attributes such as low-cost, easy to fabricate, and dual-band, it is believed that this system will find its application for future 5G systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据