4.7 Article

Activation of TMEM16A Ca2+-activated Cl- channels by ROCK1/moesin promotes breast cancer metastasis

期刊

JOURNAL OF ADVANCED RESEARCH
卷 33, 期 -, 页码 253-264

出版社

ELSEVIER
DOI: 10.1016/j.jare.2021.03.005

关键词

TMEM16A; Cl- channel; Metastasis; ROCK1; Moesin

资金

  1. National Natural Science Foundation of China [81572613, 31371145, 81702611, 81802659]
  2. China Postdoctoral Science Foundation [2019M651177, 2018M641738]

向作者/读者索取更多资源

Activation of TMEM16A promoted breast cancer cell migration and invasion in vitro as well as breast cancer metastasis in mice. Patients with higher TMEM16A levels showed greater lymph node metastasis and shorter survival.
Introduction: Transmembrane protein 16A (TMEM16A) is a Ca2+-activated chloride channel that plays a role in cancer cell proliferation, migration, invasion, and metastasis. However, whether TMEM16A contributes to breast cancer metastasis remains unknown. Objective: In this study, we investigated whether TMEM16A channel activation by ROCK1/moesin promotes breast cancer metastasis. Methods: Wound healing assays and transwell migration and invasion assays were performed to study the migration and invasion of MCF-7 and T47D breast cancer cells. Western blotting was performed to evaluate the protein expression, and whole-cell patch clamp recordings were used to record TMEM16A Cl- currents. A mouse model of breast cancer lung metastasis was generated by injecting MCF-7 cells via the tail vein. Metastatic nodules in the lung were assessed by hematoxylin and eosin staining. Lymph node metastasis, overall survival, and metastasis-free survival of breast cancer patients were assessed using immunohistochemistry and The Cancer Genome Atlas dataset. Results: TMEM16A activation promoted breast cancer cell migration and invasion in vitro as well as breast cancer metastasis in mice. Patients with breast cancer who had higher TMEM16A levels showed greater lymph node metastasis and shorter survival. Mechanistically, TMEM16A promoted migration and invasion by activating EGFR/STAT3/ROCK1 signaling, and the role of the TMEM16A channel activity was important in this respect. ROCK1 activation by RhoA enhanced the TMEM16A channel activity via the phosphorylation of moesin at T558. The cooperative action of TMEM16A and ROCK1 was supported through clinical findings indicating that breast cancer patients with high levels of TMEM16A/ROCK1 expression showed greater lymph node metastasis and poor survival. Conclusion: Our findings revealed a novel mechanism underlying TMEM16A-mediated breast cancer metastasis, in which ROCK1 increased TMEM16A channel activity via moesin phosphorylation and the increase in TMEM16A channel activities promoted cell migration and invasion. TMEM16A inhibition may be a novel strategy for treating breast cancer metastasis. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据