4.7 Article

The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes

期刊

CELL DISCOVERY
卷 7, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41421-021-00268-z

关键词

-

资金

  1. National Key R&D Program of China [2017YFA0506300]
  2. National Natural Science Foundation of China [31770820]

向作者/读者索取更多资源

The study identified that ORF3a protein of SARS-CoV-2 inhibits autophagic flux by blocking fusion of autophagosomes with lysosomes. This mechanism helps the virus evade degradation, and further research may lead to strategies targeting autophagy to combat the spread of SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing coronavirus disease 2019 pandemic. How SARS-CoV-2 regulates cellular responses to escape clearance by host cells is unknown. Autophagy is an intracellular lysosomal degradation pathway for the clearance of various cargoes, including viruses. Here, we systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes. ORF3a colocalized with lysosomes and interacted with VPS39, a component of the homotypic fusion and protein sorting (HOPS) complex. The ORF3a-VPS39 interaction prohibited the binding of HOPS with RAB7, which prevented the assembly of fusion machinery, leading to the accumulation of unfused autophagosomes. These results indicated the potential mechanism by which SARS-CoV-2 escapes degradation; that is, the virus interferes with autophagosome-lysosome fusion. Furthermore, our findings will facilitate strategies targeting autophagy for conferring potential protection against the spread of SARS-CoV-2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据