4.6 Article

High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice

期刊

CANCERS
卷 13, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/cancers13102315

关键词

topoisomerase; TDP1; TDP2; cancer; ageing; hyperthermia; genomic instability

类别

资金

  1. Zewail City of Science and Technology Development Fund [22935]
  2. ASRT [ASRT-45]
  3. Wellcome Trust Investigator Award [103844]
  4. Lister Institute of Preventative Medicine Fellowship [137661]

向作者/读者索取更多资源

Research shows that hyperthermia can suppress the repair of DNA damage caused by topoisomerases, providing an explanation for the protective effect of hyperthermia on topoisomerase-targeting therapeutics, and paving the way for the use of controlled heat as a therapeutic adjunct.
Simple Summary Targeting topoisomerases has been widely used as anticancer therapeutics. Exposure to high temperature (hyperthermia) protects cells from the cytotoxic effect of topoisomerase-targeting therapeutics, yet the mechanism remains unknown. Here, we report that hyperthermia inhibits the nucleolytic processing of topoisomerase-induced DNA damage and drives repair to a more faithful pathway mediated by TDP1 and TDP2. We further show that hyperthermia suppresses topoisomerase-induced chromosomal translocation and hallmarks of inflammation, which has broad implications in cancer development and therapy. Cancer-causing mutations often arise from inappropriate DNA repair, yet acute exposure to DNA damage is widely used to treat cancer. The challenge remains in how to specifically induce excessive DNA damage in cancer cells while minimizing the undesirable effects of genomic instability in noncancerous cells. One approach is the acute exposure to hyperthermia, which suppresses DNA repair and synergizes with radiotherapy and chemotherapy. An exception, however, is the protective effect of hyperthermia on topoisomerase targeting therapeutics. The molecular explanation for this conundrum remains unclear. Here, we show that hyperthermia suppresses the level of topoisomerase mediated single- and double-strand breaks induced by exposure to topoisomerase poisons. We further uncover that, hyperthermia suppresses hallmarks of genomic instability induced by topoisomerase targeting therapeutics by inhibiting nuclease activities, thereby channeling repair to error-free pathways driven by tyrosyl-DNA phosphodiesterases. These findings provide an explanation for the protective effect of hyperthermia from topoisomerase-induced DNA damage and may help to explain the inverse relationship between cancer incidence and temperature. They also pave the way for the use of controlled heat as a therapeutic adjunct to topoisomerase targeting therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据