4.6 Article

The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells

期刊

CANCERS
卷 13, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/cancers13071509

关键词

acute myeloid leukemia; mesenchymal stem cells; protein; proteomics; extracellular protein release; conditioned medium; patient heterogeneity

类别

资金

  1. Norwegian Cancer Society [100933, 182609]

向作者/读者索取更多资源

The communication between AML cells and mesenchymal stem cells through protein release plays a crucial role in the development of leukemia and the bone marrow microenvironment. The diversity and variability of the proteins released by these cells suggest potential new strategies for cancer treatment involving inhibition of this bidirectional communication.
Simple Summary The formation of normal blood cells in the bone marrow is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. These cell types support and regulate the growth of acute myeloid leukemia (AML) cells and communicate with leukemic cells through the release of proteins to their common extracellular microenvironment. One of the AML-supporting normal cell types is a subset of connective tissue cells called mesenchymal stem cells. In the present study, we observed that AML cells release a wide range of diverse proteins into their microenvironment, but patients differ both with regard to the number and amount of released proteins. Inhibition of this bidirectional communication through protein release between AML cells and leukemia-supporting normal cells may become a new strategy for cancer treatment. Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557-2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据