4.6 Article

NCX-4040, a Unique Nitric Oxide Donor, Induces Reversal of Drug-Resistance in Both ABCB1-and ABCG2-Expressing Multidrug Human Cancer Cells

期刊

CANCERS
卷 13, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/cancers13071680

关键词

NCX4040; nitric oxide-donors; nitric oxide; P-gp protein; breast cancer resistance protein; adriamycin; topotecan

类别

资金

  1. National Institute of Environmental Health Sciences, NIH [ZIA E505013922, ZIA BC 0011476, Z01 ES043010]

向作者/读者索取更多资源

The development of resistance to chemotherapeutics in human cancers poses a serious problem in clinical practice. Overexpression of ABC efflux proteins on tumor cell membranes is believed to be a main mechanism for clinical resistance. Nitric oxide has shown promising potential in inhibiting ATPase functions of ABC transporters, leading to reversal of resistance to various anticancer drugs. Studies suggest that tumor-specific nitric oxide donors may be useful in treating human tumors overexpressing ABC transporters, including cancer stem cells.
Simple Summary Development of resistance to chemotherapeutics during the treatment of human cancers is a serious problem in the clinic, resulting in a poor treatment outcome and survival. It is believed that overexpression of ABC efflux proteins (e.g., P-gp/ABCB1, BCRP/ABCG2 and MRP/ABCC1) on the tumor cell membrane is one of the main mechanisms for this clinical resistance. Our recent studies indicate that nitric oxide (NO), inhibits ATPase functions of ABC transporters, resulting in reversal of resistance to various anticancer drugs. In this study we have found that nitric oxide and/or active metabolite (s) generated from NCX4040, a nitric oxide donor, inhibited ABC transporter activities by inhibiting their ATPase functions, causing reversal of both adriamycin and topotecan resistance in human MDR tumor cells. We also found that nitric oxide and/or metabolites of NCX4040 significantly enhanced drug accumulations in MDR tumor cells. These studies strongly suggest that tumor specific nitric oxide donors that deliver high amounts of nitric oxide and reactive species to clinical resistant tumors may be extremely useful in treating human tumors overexpressing ABC transporters, including cancer stem cells. In addition, such NO-donors can also be utilized for treating other diseases where drug resistance results from the presence of ATP-dependent transporter proteins. The emergence of multidrug resistance (MDR) in the clinic is a significant problem for a successful treatment of human cancers. Overexpression of various ABC transporters (P-gp, BCRP and MRP's), which remove anticancer drugs in an ATP-dependent manner, is linked to the emergence of MDR. Attempts to modulate MDR have not been very successful in the clinic. Furthermore, no single agent has been found to significantly inhibit their functions to overcome clinical drug resistance. We have previously shown that nitric oxide ((NO)-N-?) inhibits ATPase functions of ABC transporters, causing reversal of resistance to clinically active anticancer drugs. In this study, we have used cytotoxicity and molecular docking studies to show that NCX4040, a nitric oxide donor related to aspirin, inhibited the functions of ATPase which resulted in significant reversal of resistance to both adriamycin and topotecan in P-gp- and BCRP-expressing human cancer cell lines, respectively. We also used several other cytotoxic nitric oxide donors, e.g., molsidomine and S-nitroso glutathione; however, both P-gp- and BCRP-expressing cells were found to be highly resistant to these NO-donors. Molecular docking studies showed that NCX4040 binds to the nucleotide binding domains of the ATPase and interferes with further binding of ATP, resulting in decreased activities of these transporters. Our results are extremely promising and suggest that nitric oxide and other reactive species delivered to drug resistant tumor cells by well-designed nitric oxide donors could be useful in sensitizing anticancer drugs in multidrug resistant tumors expressing various ABC transporters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据