4.7 Article

Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data

期刊

MSYSTEMS
卷 6, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mSystems.01105-20

关键词

longitudinal microbiome analysis; multi-omic integration; microbial composition prediction; dynamic Bayesian networks; temporal alignment

资金

  1. McDonnell Foundation
  2. NSF [DBI-1356505]
  3. NIH [1R15AI128714-01]
  4. FIU Dissertation Year Fellowship

向作者/读者索取更多资源

Developed a computational pipeline PALM that integrates multi-omics data from longitudinal microbiome studies using dynamic Bayesian networks (DBNs), accurately identifying both known and novel interactions between microbial taxa. Experimental validations further supported predicted novel metabolite-taxon interactions, demonstrating the method's ability to identify new relationships and their impact.
A key challenge in the analysis of longitudinal microbiome data is the inference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges, we developed a computational pipeline, a pipeline for the analysis of longitudinal multi-omics data (PALM), that first aligns multi-omics data and then uses dynamic Bayesian networks (DBNs) to reconstruct a unified model. Our approach overcomes differences in sampling and progression rates, utilizes a biologically inspired multi-omic framework, reduces the large number of entities and parameters in the DBNs, and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novel interactions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions. IMPORTANCE While a number of large consortia collect and profile several different types of microbiome and genomic time series data, very few methods exist for joint modeling of multi-omics data sets. We developed a new computational pipeline, PALM, which uses dynamic Bayesian networks (DBNs) and is designed to integrate multi-omics data from longitudinal microbiome studies. When used to integrate sequence, expression, and metabolomics data from microbiome samples along with host expression data, the resulting models identify interactions between taxa, their genes, and the metabolites that they produce and consume, as well as their impact on host expression. We tested the models both by using them to predict future changes in microbiome levels and by comparing the learned interactions to known interactions in the literature. Finally, we performed experimental validations for a few of the predicted interactions to demonstrate the ability of the method to identify novel relationships and their impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据