4.8 Review

Bond-selective imaging by optically sensing the mid-infrared photothermal effect

期刊

SCIENCE ADVANCES
卷 7, 期 20, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abg1559

关键词

-

资金

  1. [R35GM136223]

向作者/读者索取更多资源

Mid-infrared photothermal microscopy overcomes the limitations of traditional infrared spectroscopic imaging by using visible light to detect the photothermal effect induced by infrared absorption. It provides submicrometer spatial resolution with high spectral fidelity and reduced water background, thus offering a wide range of applications in life sciences and materials.
Mid-infrared (IR) spectroscopic imaging using inherent vibrational contrast has been broadly used as a powerful analytical tool for sample identification and characterization. However, the low spatial resolution and large water absorption associated with the long IR wavelengths hinder its applications to study subcellular features in living systems. Recently developed mid-infrared photothermal (MIP) microscopy overcomes these limitations by probing the IR absorption-induced photothermal effect using a visible light. MIP microscopy yields submicrometer spatial resolution with high spectral fidelity and reduced water background. In this review, we categorize different photothermal contrast mechanisms and discuss instrumentations for scanning and widefield MIP microscope configurations. We highlight a broad range of applications from life science to materials. We further provide future perspective and potential venues in MIP microscopy field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据