4.7 Article

Hierarchical porous Fe3O4/RGO nanocomposite powders as high performance microwave absorbers

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2021.05.002

关键词

Fe3O4; RGO; Magnetic properties; Microwave absorption performance

向作者/读者索取更多资源

The Fe3O4/RGO composite powders prepared by different fuels, glycine and urea, showed differences in structure, magnetic properties, and microwave absorption performance. The urea fuel synthesis resulted in higher saturation magnetization, while the glycine fuel synthesis of pristine Fe3O4 powders had higher absorption properties.
Fe3O4/reduced graphene oxide (RGO) composite powders were prepared by solution combustion synthesis method. The effects of fuel type; glycine and urea; on the structure, microstructure, magnetic, and microwave absorption properties were characterized by modern methods. A mixture of alpha-Fe2O3 and Fe3O4 phases was obtained by the urea fuel, while the glycine fuel led to the pure Fe3O4 phase. The scanning and transmission electron microscopy showed the Fe3O4 nanoparticles were distributed on the ultrathin RGO sheets. With the addition of RGO, the saturation magnetization increased up to 84 emu/g due to the higher amounts of the magnetite phase. The Fe3O4/RGO composite powders synthesized by the urea fuel showed a reflection loss (RL) of -28 dB with effective bandwidth of 1.4 GHz in the C1 band at the matching thickness of 3.7 mm. However, the pristine Fe3O4 powders prepared by the glycine fuel had higher absorption properties, including higher RL of -33 dB and broader bandwidth of 3 GHz in the Ku band at the matching thickness of 1.2 mm. In addition to the higher magnetic and dielectric losses, the higher microwave absorption performance was attributed to the better impedance matching property caused by the porous microstructure. (C) 2021 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据