4.3 Article

Nanoparticle filtering in charged hydrogels: Effects of particle size, charge asymmetry and salt concentration

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 39, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1140/epje/i2016-16053-2

关键词

-

资金

  1. University of Kentucky
  2. University of Kentucky Research Challenge Trust Fund (RCTF) Fellowship for Biochemistry
  3. Deutsche Forschungsgemeinschaft [SFB 1112, GRK1558]

向作者/读者索取更多资源

The understanding of particle transport mechanisms in biological and synthetic hydrogels is crucial for the development of advanced drug delivery methods. We propose a simple model for the diffusion of charged nanoparticles in cross-linked, charged hydrogels based on a cubic periodic environment and an electrostatic interaction potential of varying range and strength, encompassing attractive and repulsive scenarios. The long-time diffusive properties are investigated by use of Brownian dynamics simulations and analytical methods. A number of experimentally observed phenomena attributed to nonsteric interactions between hydrogel polymers and diffusing particle are naturally reproduced by our model. Charged particles diffuse slower than uncharged particles, regardless of the sign of the surface charge, but with a stronger hindrance effect for attractive electrostatic interactions. This is explained in terms of charged particles sticking to the polymer network in regions of strong opposite charge and their exclusion from similarly charged regions. In the case of attractive interactions between hydrogel polymers and the diffusing particle, smaller charged particles diffuse slower than larger ones. This stands in contrast to a size filtering scenario but is in agreement with experimental findings. In the case of repulsive interactions, a range of differently sized particles diffuse equally fast. We compare our model predictions with published experiments on charged particle diffusion in hydrogels and confirm that electrostatic interactions are a key factor influencing the diffusivity of charged nanoparticles and that oppositely charged gels are much more effective in slowing down a charged particle than similarly charged gels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据