4.7 Article

Topological design of pentamode lattice metamaterials using a ground structure method

期刊

MATERIALS & DESIGN
卷 202, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.109523

关键词

Pentamode metamaterials; Micro lattice; Orthotropic symmetry; Topology optimization; Ground structure method

资金

  1. Australian Research Council (ARC) [DP160102491, DP210101353]

向作者/读者索取更多资源

This paper presents an efficient topology optimization method for discovering novel pentamode lattice microarchitectures with certain elastic symmetries, and demonstrates the effectiveness of the proposed method by using a genetic algorithm to solve the topology optimization problem.
Pentamode metamaterials are a new class of artificially engineering three-dimensional lattice composites. There exist a few types of pentamode metamaterials that are dominated by ad hoc design motifs, while a systematic design approach is still missing. This paper will present an efficient topological optimization methodology to discover a series of novel pentamode lattice microarchitectures over a range of effective material properties. Firstly, the necessary and sufficient condition that is required for elasticity constants of pentamode micro lattices with at least elastically orthotropic symmetry is derived. Secondly, a general mathematical formulation for design optimization of such pentamode micro lattices is developed. Thirdly, a truss-based three-dimensional ground structure with geometrically orthotropic symmetry is generated, with geometric constraints to avoid intersection and overlap of truss bars within the ground structure. The genetic algorithm is then used to solve the topology optimization problem described by the ground structure. Finally, twenty-four pentamode lattices are designed to demonstrate the effectiveness of the proposed method. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据