4.3 Article

Controlling and characterising the deposits from polymer droplets containing microparticles and salt

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 39, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1140/epje/i2016-16021-x

关键词

-

资金

  1. Tanzanian government through the Dar Es Salaam University College of Education
  2. NTU

向作者/读者索取更多资源

A coffee ring-stain is left behind when droplets containing a wide range of different suspended particles evaporate, caused by a pinned contact line generating a strong outwards capillary flow. Conversely, in the very peculiar case of evaporating droplets of poly(ethylene oxide) solutions, tall pillars are deposited in the centre of the droplet following a boot-strapping process in which the contact line recedes quickly, driven by a constricting collar of polymer crystallisation: no other polymer has been reported to produce these central pillars. Here we map out the phase behaviour seen when the specific pillar-forming polymer is combined with spherical microparticles, illustrating a range of final deposit shapes, including the standard particle ring-stain, polymer pillars and also flat deposits. The topologies of the deposits are measured using profile images and stylus profilometery, and characterised using the skewness of the profile as a simple analytic method for quantifying the shapes: pillars produce positive skew, flat deposits have zero skew and ring-stains have a negative value. We also demonstrate that pillar formation is even more effectively disrupted using potassium sulphate salt solutions, which change the water from a good solvent to a thetapoint solvent, consequently reducing the size and configuration of the polymer coils. This inhibits polymer crystallisation, interfering with the bootstrap process and ultimately prevents pillars from forming. Again, the deposit shapes are quantified using the skew parameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据