4.6 Article

Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin

期刊

SCIENCE BULLETIN
卷 66, 期 18, 页码 1849-1857

出版社

ELSEVIER
DOI: 10.1016/j.scib.2021.04.041

关键词

Paper; MXene; Microcrack; Superhydrophobic; Strain sensor

资金

  1. National Natural Science Foun-dation of China [51803191, 12072325]
  2. National Key RAMP
  3. D Program of China [2019YFA0706802]
  4. 111 project [D18023]
  5. Key Scientific and Technological Project of Henan Province [202102210038]
  6. Major projects of Ningbo

向作者/读者索取更多资源

This study presents a paper-based superhydrophobic microcracked conductive strain sensor with high sensitivity, ultra-low detection limit, and good fatigue resistance. It can effectively monitor human motions even underwater, showing great potential in practical applications.
With the rapid development of wearable intelligent devices, low-cost wearable strain sensors with high sensitivity and low detection limit are urgently demanded. Meanwhile, sensing stability of sensor in wet or corrosive environments should also be considered in practical applications. Here, superhydrophobic microcracked conductive paper-based strain sensor was fabricated by coating conductive Ti3C2Tx MXene on printing paper via dip-coating process and followed by depositing superhydrophobic candle soot layer on its surface. Owing to the ultrasensitive microcrack structure in the conductive coating layer induced by the mismatch of elastic modulus and thermal expansion coefficient between conductive coating layer and paper substrate during the drying process, the prepared paper-based strain sensor exhibited a high sensitivity (gauge factor, GF = 17.4) in the strain range of 0-0.6%, ultralow detection limit (0.1% strain) and good fatigue resistance over 1000 cycles towards bending deformation. Interestingly, it was also applicable for torsion deformation detection, showing excellent torsion angle dependent, repeatable and stable sensing performances. Meanwhile, it displayed brilliant waterproof, self-cleaning and corrosion-resistant properties due to the existence of micro/nano-structured and the low surface energy candle soot layer. As a result, the prepared paper-based strain sensor can effectively monitor a series of large-scale and small-scale human motions even under water environment, showing the great promising in practical harsh outdoor environments. Importantly, it also demonstrated good applicability for spatial strain distribution detection of skin upon body movement when assembled into electronic-skin (E-skin). This study will provide great guidance for the design of next generation wearable strain sensor. (C) 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据