4.3 Article

Role of AMPK and Akt in triple negative breast cancer lung colonization

期刊

NEOPLASIA
卷 23, 期 4, 页码 429-438

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neo.2021.03.005

关键词

Triple negative breast cancer; Organ metastasis; Akt; AMPK alpha

类别

资金

  1. National Institutes of Health [R01 CA195573, P30 CA177558, T32 CA160003]
  2. Daphne's Legacy Breast Cancer Research Funds

向作者/读者索取更多资源

The study demonstrates that transient decrease in AMPK isoforms expression alone or in combination with Akt1 in circulating tumor cells does not synergistically reduce TNBC metastatic lung colonization. Our results also provide evidence that Akt1 and Akt2 expression serve as a bottleneck that can challenge colonization of lungs by TNBC cells.
Triple negative breast cancer (TNBC) is an aggressive disease with a 5-y relative survival rate of 11% after distant metastasis. To survive the metastatic cascade, tumor cells remodel their signaling pathways by regulating energy production and upregulating survival pathways. AMP-activated protein kinase (AMPK) and Akt regulate energy homeostasis and survival, however, the individual or synergistic role of AMPK and Akt isoforms during lung colonization by TNBC cells is unknown. The purpose of this study was to establish whether targeting Akt, AMPK alpha or both Akt and AMPK alpha isoforms in circulating cancer cells can suppress TNBC lung colonization. Transient silencing of Akt1 or Akt2 dramatically decreased metastatic colonization of lungs by inducing apoptosis or inhibiting invasion, respectively. Importantly, transient pharmacologic inhibition of Akt activity with MK-2206 or AZD5363 inhibitors did not prevent colonization of lung tissue by TNBC cells. Knockdown of AMPK alpha 1, AMPK alpha 2, or AMPK alpha 1/2 also had no effect on metastatic colonization of lungs. Taken together, these findings demonstrate that transient decrease in AMPK isoforms expression alone or in combination with Akt1 in circulating tumor cells does not synergistically reduce TNBC metastatic lung colonization. Our results also provide evidence that Akt1 and Akt2 expression serve as a bottleneck that can challenge colonization of lungs by TNBC cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据