4.5 Article

Experimental validation of bulk-graphene as a thermoelectric generator

期刊

MATERIALS RESEARCH EXPRESS
卷 8, 期 5, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/2053-1591/abfc03

关键词

thermopower (TEP); figure of merit (FOM); thermoelectric generator; graphene

向作者/读者索取更多资源

The study focused on the thermoelectric properties of bulk graphene at different temperatures, revealing its metallic behavior with holes as the majority charge carriers. The thermopower of the graphene pellet was four times higher than that of single and few layer graphene, and it exhibited low thermal conductivity. Additionally, an upward trend was observed in the dimensionless figure of merit with increasing temperature, reaching a peak value at 363K, which was almost ten times higher than previous values reported.
Quest for alternate energy sources is the core of most of the research activities these days. No matter how small or large amount of energy can be produced by utilizing the non-conventional techniques and sources, every bit of innovation can reshape the future of energy. In this work, experimental analysis of the thermoelectric (TE) properties of bulk-graphene in the temperature range of (303 to 363) K is presented. Graphene powder was pressed to form a pellet which was used to fabricate the TE device. The effects of temperature on the Seebeck coefficient, electrical and thermal conductivities, and the dimensionless figure of merit (FOM) were measured. The increasing value of the Seebeck coefficient (thermopower) with temperature is indicant of the metallic behavior. Additionally, the observed thermopower (TEP) is positive, which shows that the majority charge carriers are holes and peaked to a value of 56 mu V K-1 at 363 K. The thermopower of the pellet is four times larger than the previously reported values for single layer graphene (SLG) and few layer graphene (FLG). In addition to this, low values of the thermal conductivity were observed for the pellet which is one of the requirements of a good TE material. Besides this, an upward trend is observed with increasing temperature for FOM, which attains a peak value of 0.0016 at 363 K, which is almost ten times that of the previously reported values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据