4.6 Review

High-entropy ceramics: Present status, challenges, and a look forward

期刊

JOURNAL OF ADVANCED CERAMICS
卷 10, 期 3, 页码 385-441

出版社

SPRINGER
DOI: 10.1007/s40145-021-0477-y

关键词

high-entropy ceramics (HECs); processing; structure; properties; applications

资金

  1. National Natural Science Foundation of China [51972089, 51672064, U1435206]

向作者/读者索取更多资源

High-entropy ceramics are solid solutions of inorganic compounds with diverse crystal and electronic structures, providing large space for property tuning through band structure and phonon engineering. In addition to traditional strengthening, hardening, and low thermal conductivity, HECs exhibit new properties such as colossal dielectric constant and super ionic conductivity. Challenges in processing, characterization, and property predictions are highlighted, along with future directions for material exploration and in-depth characterization.
High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements. Although in the infant stage, the emerging of this new family of materials has brought new opportunities for material design and property tailoring. Distinct from metals, the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering. Aside from strengthening, hardening, and low thermal conductivity that have already been found in high-entropy alloys, new properties like colossal dielectric constant, super ionic conductivity, severe anisotropic thermal expansion coefficient, strong electromagnetic wave absorption, etc., have been discovered in HECs. As a response to the rapid development in this nascent field, this article gives a comprehensive review on the structure features, theoretical methods for stability and property prediction, processing routes, novel properties, and prospective applications of HECs. The challenges on processing, characterization, and property predictions are also emphasized. Finally, future directions for new material exploration, novel processing, fundamental understanding, in-depth characterization, and database assessments are given.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据