4.6 Article

Subterranean movement inferred by temporary emigration in Barton Springs salamanders (Eurycea sosorum)

期刊

PEERJ
卷 9, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.11246

关键词

Conservation; Amphibian movement; Capture-recapture; Cave; Groundwater; Edwards Aquifer; Robust-design; Plethodontidae

资金

  1. City of Austin

向作者/读者索取更多资源

By analyzing four years of robust-design capture-recapture data, the researchers found that body size is a key factor influencing temporary emigration and survival of Barton Springs salamanders, with larger individuals more likely to temporarily emigrate into subterranean habitat. The surface population dynamics are impacted by movement below ground, indicating that surface abundance estimates do not reflect the total superpopulation of the species.
Movement behavior is an important aspect of animal ecology but is challenging to study in species that are unobservable for some portion of their lives, such as those inhabiting subterranean environments. Using four years of robust-design capture-recapture data, we examined the probability of movement into subterranean habitat by a population of endangered Barton Springs salamanders (Eurycea sosorum), a species that inhabits both surface and subterranean groundwater habitats. We tested the effects of environmental variables and body size on survival and temporary emigration, using the latter as a measure of subterranean habitat use. Based on 2,046 observations of 1,578 individuals, we found that temporary emigration was higher for larger salamanders, 79% of which temporarily emigrated into subterranean habitat between primary sampling intervals, on average. Body size was a better predictor of temporary emigration and survival compared to environmental covariates, although coefficients from lower ranked models suggested turbidity and dissolved oxygen may influence salamander movement between the surface and subsurface. Surface population dynamics are partly driven by movement below ground and therefore surface abundance estimates represent a fraction of the superpopulation. As such, while surface habitat management remains an important conservation strategy for this species, periodic declines in apparent surface abundance do not necessarily indicate declines of the superpopulation associated with the spring habitat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据