4.3 Article

Magnetic MBR technology: from the fabrication of membrane to application in wastewater treatment

期刊

出版社

SPRINGER
DOI: 10.1007/s40201-021-00666-1

关键词

Fe3O4 nanoparticle; Al2O3 nanoparticle; Magnetic casting; Fouling; Magnetic membrane bioreactor

向作者/读者索取更多资源

This study successfully synthesized a magnetic nanocomposite membrane using the magnetic casting method and applied it in MBR for oily wastewater treatment, showing that the presence of a magnetic field significantly improved MBR performance and increased COD removal rate.
The aim of this study is to synthesize a magnetic nanocomposite membrane using iron oxide and alumina nanoparticles and employing it in magnetic membrane bioreactors (MBRs) for oily wastewater treatment. Al2O3 and Fe3O4 nanoparticles with approximate sizes of 20 and 30 nm respectively, were settled into a polysulfone (PSf) membrane matrix via magnetic casting method. The concentration of alumina and iron oxide nanoparticles were 0-0.25 wt% and 0.03 wt%, respectively. Compared with the blank membrane, an increase in the concentration of Fe3O4 up to 0.2 wt%, led to the flux as much as 70% and mitigated total resistance by 70%. The presence of the magnetic field around the bioreactor increased the flux significantly and reduced the cake resistance by 93%. Moreover, by applying the static magnetic field to MBR, the Chemical Oxygen Demand (COD) removal rate was increased to 93%, while in the MBR without the magnetic field the COD removal rate was 80%. Our investigation illustrated that the magnetic casting is an effective method to improve the flux and mitigate the fouling of the magnetic nanocomposite membrane. The output of this research indicates that the magnetic casting method enhance the magnetic MBRs performance for wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据