4.6 Article

Evolution of an Epidermal Differentiation Complex (EDC) Gene Family in Birds

期刊

GENES
卷 12, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/genes12050767

关键词

amniote; epidermis; genome; feathers; evolution

向作者/读者索取更多资源

The study characterizes the EDAA gene family in birds, suggesting it originated in an early archosaur ancestor and has expanded in birds, crocodiles, and turtles. The amino acid compositions of avian EDAAs are characteristic of structural functions associated with EDC genes and feather development. This supports the hypothesis that EDC genes have evolved through tandem duplication and diversification, contributing to the evolution of the intricate avian epidermis and epidermal appendages.
The transition of amniotes to a fully terrestrial lifestyle involved the adaptation of major molecular innovations to the epidermis, often in the form of epidermal appendages such as hair, scales and feathers. Feathers are diverse epidermal structures of birds, and their evolution has played a key role in the expansion of avian species to a wide range of lifestyles and habitats. As with other epidermal appendages, feather development is a complex process which involves many different genetic and protein elements. In mammals, many of the genetic elements involved in epidermal development are located at a specific genetic locus known as the epidermal differentiation complex (EDC). Studies have identified a homologous EDC locus in birds, which contains several genes expressed throughout epidermal and feather development. A family of avian EDC genes rich in aromatic amino acids that also contain MTF amino acid motifs (EDAAs/EDMTFs), that includes the previously reported histidine-rich or fast-protein (HRP/fp), an important marker in feather development, has expanded significantly in birds. Here, we characterize the EDAA gene family in birds and investigate the evolutionary history and possible functions of EDAA genes using phylogenetic and sequence analyses. We provide evidence that the EDAA gene family originated in an early archosaur ancestor, and has since expanded in birds, crocodiles and turtles, respectively. Furthermore, this study shows that the respective amino acid compositions of avian EDAAs are characteristic of structural functions associated with EDC genes and feather development. Finally, these results support the hypothesis that the genes of the EDC have evolved through tandem duplication and diversification, which has contributed to the evolution of the intricate avian epidermis and epidermal appendages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据