4.6 Article

Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software

期刊

GENES
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/genes12040599

关键词

mtDNA; mitochondria; forensic; validation; Scientific Working Group on DNA Analysis Methods (SWGDAM); massively parallel sequencing; next generation sequencing; ForenSeq; MiSeq; sequencing by synthesis

向作者/读者索取更多资源

This study utilized next-generation sequencing for forensic mitochondrial DNA analysis and validated the robust performance of two multiplexes on various samples, meeting or exceeding forensic DNA quality assurance guidelines.
Forensic mitochondrial DNA (mtDNA) analysis conducted using next-generation sequencing (NGS), also known as massively parallel sequencing (MPS), as compared to Sanger-type sequencing brings modern advantages, such as deep coverage per base (herein referred to as read depth per base pair (bp)), simultaneous sequencing of multiple samples (libraries) and increased operational efficiencies. This report describes the design and developmental validation, according to forensic quality assurance standards, of end-to-end workflows for two multiplexes, comprised of ForenSeq mtDNA control region and mtDNA whole-genome kits the MiSeq FGx(TM) instrument and ForenSeq universal analysis software (UAS) 2.0/2.1. Polymerase chain reaction (PCR) enrichment and a tiled amplicon approach target small, overlapping amplicons (60-150 bp and 60-209 bp for the control region and mtGenome, respectively). The system provides convenient access to data files that can be used outside of the UAS if desired. Studies assessed a range of environmental and situational variables, including but not limited to buccal samples, rootless hairs, dental and skeletal remains, concordance of control region typing between the two multiplexes and as compared to orthogonal data, assorted sensitivity studies, two-person DNA mixtures and PCR-based performance testing. Limitations of the system and implementation considerations are discussed. Data indicated that the two mtDNA multiplexes, MiSeq FGx and ForenSeq software, meet or exceed forensic DNA quality assurance (QA) guidelines with robust, reproducible performance on samples of various quantities and qualities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据