4.6 Article

GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation

期刊

FRONTIERS IN NEUROSCIENCE
卷 15, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2021.647535

关键词

multiple sclerosis; deep learning; advanced quantitative diffusion MRI; relative importance order; clinically correlated measure selection

资金

  1. Swiss National Funds [PZ00P3_154508, PZ00P3_131914, PP00P3_176984]
  2. European Union [765148]
  3. Swiss National Science Foundation (SNF) [PZ00P3_154508, PZ00P3_131914, PP00P3_176984] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

In the study, a deep learning technique was applied to diffusion imaging data to select the most discriminative diffusion measures for classifying MS lesions and surrounding tissue. By correlating with clinical and biological data, the combination of microstructural measures that best reflect disability and neuroaxonal damage was identified.
Conventional magnetic resonance imaging (cMRI) in multiple sclerosis (MS) patients provides measures of focal brain damage and activity, which are fundamental for disease diagnosis, prognosis, and the evaluation of response to therapy. However, cMRI is insensitive to the damage to the microenvironment of the brain tissue and the heterogeneity of MS lesions. In contrast, the damaged tissue can be characterized by mathematical models on multishell diffusion imaging data, which measure different compartmental water diffusion. In this work, we obtained 12 diffusion measures from eight diffusion models, and we applied a deep-learning attention-based convolutional neural network (CNN) (GAMER-MRI) to select the most discriminating measures in the classification of MS lesions and the perilesional tissue by attention weights. Furthermore, we provided clinical and biological validation of the chosen metrics-and of their most discriminative combinations-by correlating their respective mean values in MS patients with the corresponding Expanded Disability Status Scale (EDSS) and the serum level of neurofilament light chain (sNfL), which are measures of disability and neuroaxonal damage. Our results show that the neurite density index from neurite orientation and dispersion density imaging (NODDI), the measures of the intra-axonal and isotropic compartments from microstructural Bayesian approach, and the measure of the intra-axonal compartment from the spherical mean technique NODDI were the most discriminating (respective attention weights were 0.12, 0.12, 0.15, and 0.13). In addition, the combination of the neurite density index from NODDI and the measures for the intra-axonal and isotropic compartments from the microstructural Bayesian approach exhibited a stronger correlation with EDSS and sNfL than the individual measures. This work demonstrates that the proposed method might be useful to select the microstructural measures that are most discriminative of focal tissue damage and that may also be combined to a unique contrast to achieve stronger correlations to clinical disability and neuroaxonal damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据