4.5 Article

Cytoskeletal Filaments Deep Inside a Neuron Are not Silent: They Regulate the Precise Timing of Nerve Spikes Using a Pair of Vortices

期刊

SYMMETRY-BASEL
卷 13, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/sym13050821

关键词

neuron; microtubule; optical vortex; clocking model; coaxial atom probe; scanning dielectric microscope

资金

  1. Asian Office of Aerospace R&D (AOARD), United States Air Force (USAF) [FA2386-16-1-0003]

向作者/读者索取更多资源

Hodgkin and Huxley demonstrated that a neuron's membrane alone can generate and transmit nerve spikes, with the time modulation mechanism still being a mystery. Filaments hold millisecond time gaps between membrane spikes while transmitting microsecond signals of electromagnetic vortices.
Hodgkin and Huxley showed that even if the filaments are dissolved, a neuron's membrane alone can generate and transmit the nerve spike. Regulating the time gap between spikes is the brain's cognitive key. However, the time modula-tion mechanism is still a mystery. By inserting a coaxial probe deep inside a neuron, we have re-peatedly shown that the filaments transmit electromagnetic signals similar to 200 mu s before an ionic nerve spike sets in. To understand its origin, here, we mapped the electromagnetic vortex produced by a filamentary bundle deep inside a neuron, regulating the nerve spike's electrical-ionic vortex. We used monochromatic polarized light to measure the transmitted signals beating from the internal components of a cultured neuron. A nerve spike is a 3D ring of the electric field encompassing the perimeter of a neural branch. Several such vortices flow sequentially to keep precise timing for the brain's cognition. The filaments hold millisecond order time gaps between membrane spikes with microsecond order signaling of electromagnetic vortices. Dielectric resonance images revealed that ordered filaments inside neural branches instruct the ordered grid-like network of actin-beta-spectrin just below the membrane. That layer builds a pair of electric field vortices, which coherently activates all ion-channels in a circular area of the membrane lipid bilayer when a nerve spike propagates. When biomaterials vibrate resonantly with microwave and radio-wave, simultaneous quantum optics capture ultra-fast events in a non-demolition mode, revealing multiple correlated time-domain operations beyond the Hodgkin-Huxley paradigm. Neuron holograms pave the way to understanding the filamentary circuits of a neural network in addition to membrane circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据