4.5 Article

Comparison of Osteogenic Differentiation Potential of Human Dental-Derived Stem Cells Isolated from Dental Pulp, Periodontal Ligament, Dental Follicle, and Alveolar Bone

期刊

STEM CELLS INTERNATIONAL
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/6631905

关键词

-

资金

  1. National Natural Science Foundation of China [81870785]
  2. Shanghai municipal hospital emerging frontier technology united key project [SHDC12017101]
  3. CAMS Innovation Fund for Medical Sciences (CIFMS) [2019-I2M-5-037]
  4. Plan of Natural Science Foundation (LiaoNing, China) [2019-ZD-0775, 2020-MS-175]
  5. Science and Technology Planning Project (ShenYang, China) [20-205-4-052]

向作者/读者索取更多资源

This study compared four different types of dental-derived MSCs from the same donor and found that they exhibited similar morphology and immunophenotype, but differences were observed in proliferation rate and osteogenic potential. Among them, ABMMSCs and PDLSCs showed the highest osteogenic ability, making them optimal candidates for bone tissue engineering.
Background. Mesenchymal stem cells (MSCs) have become promising candidates for regeneration medicine due to their multidifferentiation potential and immunomodulatory ability. Compared with classic MSCs derived from the bone marrow and fat, dental-derived MSCs show high plasticity, accessibility, and applicability. Therefore, they are considered alternative sources for regeneration medicine. Methods. Four types of MSCs were isolated from the dental pulp, periodontal ligament, dental follicle, and alveolar bone of the same donor, and there were five different individuals. We analyzed their morphology, immunophenotype, proliferation rate, apoptosis, trilineage differentiation potential, and the gene expression during osteogenic differentiation. Results. Our research demonstrated that DPSCs, PDLSCs, DFPCs and ABMMSCs exhibited similar morphology and immunophenotype. DFPCs showed a higher rate of proliferation and apoptosis. When cultured in the trilineage differentiation medium, all types of MSCs presented the differentiation potential of osteogenesis, adipogenesis, and chondrogenesis. Through staining and genetic analysis during osteogenic induction, ABMMSCs and PDLSCs showed the highest osteogenic ability, followed by DPSCs, and DFPCs were the lowest. Conclusions. Overall, our results indicated that different dental-derived stem cells possessed different biological characteristics. For bone tissue engineering, ABMMSCs and PDLSCs can be used as optimal candidates of seed cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据