4.5 Article

Dexmedetomidine protects against degeneration of dopaminergic neurons and improves motor activity in Parkinson's disease mice model

期刊

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
卷 28, 期 6, 页码 3198-3203

出版社

ELSEVIER
DOI: 10.1016/j.sjbs.2021.04.013

关键词

Dopaminergic neurons; Degeneration; Dexmedetomidine; Motor activity

类别

向作者/读者索取更多资源

This study investigated the effect of dexmedetomidine on inhibiting proinflammatory mediators regulated by NF-KB, improving dopamine levels, and reducing degeneration of dopaminergic neurons in the substantianigra pars compacta in a Parkinson's disease mouse model.
Parkinson's disease (PD) is the result of dopaminergic (DA) neuronal death in the substantianigra pars compacta (SNc). Current treatments for PD such as L-dopa are limited in effectiveness and fail to address the cause. Targeted anti-inflammatory therapies, particularly directed at nuclear factor kappa B (NF-KB) activity in alleviating degeneration of DA-neurons is of evolving interest. In the present study, we hypothesised that dexmedetomidine (DEX), an alpha-2 receptor adrenergic agonist, suppress the inflammatory responses associated with PD and restores dopaminergic levels by alleviating substantia nigral degeneration. Male mice (C57Bl/10, 8-11 months old and of 34-40 g of weight) were divided into: the control, 1methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and MPTP + dexmedetomidine (MPTP + DEX) (n = 26 each group). Dex restored dopamine levels in SNpc of MPTP-induced PD mice model. Results of immunohisto staining revealed that Dex treatment post-MPTP induction restored TH-positive cells, with only 12.37% increase (##p < 0.01 vs MPTP) on the third day and a steep 55% increase (###p < 0.001 vs MPTP) following the seventh day of Dex treatment. Moreover, the expressions of proinflammatory markers regulated by NF-KB were diminished in Dex + MPTP group. In addition, cylinder test revealed that Dex treatment improved asymmetric limb usage pattern in MPTP induced mice over the course of 7 days. Hence, in this study, we provided insight on the effect of Dex in the inhibition of NFKB1 regulated proinflammatory mediators to improve dopamine levels and reduce SNpc dopaminergic neuronal degeneration. (c) 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据