4.5 Article

Mitigation of saline conditions in watermelon with mycorrhiza and silicon application

期刊

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
卷 28, 期 7, 页码 3678-3684

出版社

ELSEVIER
DOI: 10.1016/j.sjbs.2021.05.019

关键词

Citrullus lanatus L; Antioxidant; Reactive oxygen species

类别

资金

  1. Taif University, Taif, Saudi University [TURSP-2020/94]

向作者/读者索取更多资源

The study revealed that inoculation with silicon and two species of arbuscular mycorrhizal fungi significantly improved growth and antioxidant efficiency of watermelon plants under salt stress, helping alleviate the negative effects of salinity stress on plants.
Citrullus lanatus L. is critical vegetable for salinity stress. Arbuscular mycorrhizal fungi (AMF) and silicon treatments are known to help as bio-ameliorator of saline soils that can improve salinity tolerance in plants. But their combined effect has never been examined on watermelon therefore, present study investigated the effect of inoculation with the Arbuscular mycorrhizal fungi (AMF) along with silicon on the growth and yield parameters, antioxidant enzyme activities, pigment and mineral content of Citrullus lanatus L. plants grown during salt stress conditions. Outcomes from the study point out that salt stressed watermelon plants showed the best morphological and biochemical values when inoculated with Silicon (4 mM) + Glomus mosseae + Gigaspora gigantean. In addition, the plants inoculated by similar treatment demonstrated less osmotic activity, electrolyte leakage, as well as peroxide content. Treatments comprising Silicon (4 mM) with either Glomus mosseae and Gigaspora gigantean also performed significantly similar for most of the traits studied in the present investigation and better than the treatment only with either one of Glomus mosseae and Gigaspora gigantean. Antioxidant efficiency of melon was certainly appreciably enhanced after incubation with AMF and Si combination in salinity stress. Overall, the application of mycorrhiza and silicon can be considered to overcome the salinity stress in watermelon.& nbsp; (c) 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据