4.8 Article

High-mass loading V3O7•H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry

期刊

NANO ENERGY
卷 83, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.105835

关键词

Zinc-ion battery; Zn ion intercalation; V3O7 center dot H2O; Vanadium oxides; Aqueous batteries

资金

  1. National Natural Science Foundation of China (NSFC) [21571080]
  2. Ministry of Education by Tier 1 grant [RG10/18]
  3. SinoSingapore International Joint Research Institute [204-A018002]

向作者/读者索取更多资源

In this study, a new synthesis approach for V3O7 center dot H2O nanoarray cathode with large mass loadings is introduced, along with an empirical model to evaluate the utilization ratio of active materials. By combining first-principles calculations and ex-situ characterizations, a two-step Zn2+ intercalation mechanism in V3O7 center dot H2O is identified for the first time, providing insights for the design of high-massloading battery materials.
Vanadium-based materials are promising cathode materials for aqueous rechargeable zinc-ion batteries (ZIBs). However, up to now, the detailed Zn ion intercalation mechanisms are still not fully clear. In this work, we first show a new facile synthesis approach for V3O7 center dot H2O nanoarray cathode with large mass loadings (1.0-12 mg cm(-2)). An empirical model is proposed to assess the utilization ratio of active materials under different mass loadings. Then, through the combination of first-principles calculations and a series of ex-situ characterizations, we identify for the first time a two-step Zn2+ intercalation mechanism in V3O7 center dot H2O. The stepwise and reversible intercalation process is manifested by different diffusion energy barriers and segmented electrochemical kinetics in various discharge depths. The nanoarray binder-free electrode is also applied in pouch cells which show high capacities than state-of-the-art ZIB pouch cells. This study may provide an elucidation for the disputed Zn2+ intercalation chemistry of vanadium-based cathodes in ZIBs as well as a guidance to the design of high-massloading battery materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据