4.7 Article

Effects of the surface charge of polyamidoamine dendrimers on cellular exocytosis and the exocytosis mechanism in multidrug-resistant breast cancer cells

期刊

JOURNAL OF NANOBIOTECHNOLOGY
卷 19, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12951-021-00881-w

关键词

Surface charge; Exocytosis dynamics; Exocytosis pathways; ATP binding cassette proteins; Organelles; Major vault protein

资金

  1. Natural Science Foundation Committee of China [81703437, 81872220]
  2. Basic Public Welfare Research Project of Zhejiang Province [LGF20H300012, LGF18H160034]
  3. Key RAMP
  4. D Technological Transformation Project of Qinghai Province
  5. Science and Technology Bureau of Jiaxing [2019AY32009]
  6. Jiaxing Key Laboratory of Oncological Photodynamic Therapy
  7. TCM Technology Innovation Team

向作者/读者索取更多资源

This study investigated the exocytosis rule and mechanism of PAMAM dendrimers in multidrug-resistant tumor cells. The results showed that positively charged PAMAM-NH2 had the highest exocytosis rate and was attracted to the mitochondria and cell nuclei. Intracellular transportation processes, attraction to the mitochondria and cell nucleus, as well as nuclear efflux generated by MVP were major factors contributing to the exocytosis of PAMAM-NH2.
Background: Polyamidoamine (PAMAM) dendrimer applications have extended from tumor cells to multidrug-resistant tumor cells. However, their transportation in multidrug-resistant tumor cells remains unclear. Herein, we investigated the exocytosis rule and mechanism of PAMAM dendrimers in multidrug-resistant tumor cells. Results: Using a multidrug-resistant human breast cancer cell model (MCF-7/ADR), we performed systematic analyses of the cellular exocytosis dynamics, pathways and mechanisms of three PAMAM dendrimers with different surface charges: positively charged PAMAM-NH2, neutral PAMAM-OH and negatively charged PAMAM-COOH. The experimental data indicated that in MCF-7/ADR cells, the exocytosis rate was the highest for PAMAM-NH2 and the lowest for PAMAM-OH. Three intracellular transportation processes and P-glycoprotein (P-gp) participated in PAMAM-NH2 exocytosis in MCF-7/ADR cells. Two intracellular transportation processes, P-gp and multidrug resistance (MDR)-associated protein participated in PAMAM-COOH exocytosis. P-gp and MDR-associated protein participated in PAMAM-OH exocytosis. Intracellular transportation processes, rather than P-gp and MDR-associated protein, played major roles in PAMAM dendrimer exocytosis. PAMAM-NH2 could enter MCF-7/ADR cells by forming nanoscale membrane holes, but this portion of PAMAM-NH2 was eliminated by P-gp. Compared with PAMAM-OH and PAMAM-COOH, positively charged PAMAM-NH2 was preferentially attracted to the mitochondria and cell nuclei. Major vault protein (MVP) promoted exocytosis of PAMAM-NH2 from the nucleus but had no effect on the exocytosis of PAMAM-OH or PAMAM-COOH. Conclusions: Positive charges on the surface of PAMAM dendrimer promote its exocytosis in MCF-7/ADR cells. Three intracellular transportation processes, attraction to the mitochondria and cell nucleus, as well as nuclear efflux generated by MVP led to the highest exocytosis observed for PAMAM-NH2. Our findings provide theoretical guidance to design a surface-charged tumor-targeting drug delivery system with highly efficient transfection in multidrug-resistant tumor cells. Especially, to provide more DNA to the nucleus and enhance DNA transfection efficiency in multidrug-resistant tumor cells using PAMAM-NH2, siRNA-MVP or an inhibitor should be codelivered to decrease MVP-mediated nuclear efflux.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据